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Abstract: - This paper is devoted to the processing of large numerical signals which arise in different technical 

problems (for example, in positioning systems, satellite maneuvers, in the prediction a lot of phenomenon, and 

so on).  The main tool of the processing is polynomial and nonpolynomial splines of the Hermite type, which are 

obtained by the approximation relations. These relations allow us to construct splines with approximate 

properties, which are asymptotically optimal as to N-width of the standard compact sets. The interpolation 

properties of the mentioned splines are investigated. Such properties give opportunity to obtain the solution of 

the interpolation Hermite problems without solution of equation systems. The calibration relations on embedded 

grids are established in the case of deleting  the grid knots and in the case of the addition of the last one. A 

consequence of the obtained results is the embedding of  the Hermite spline spaces on the embedded grids. The 

mentioned embedding allows us to obtain wavelet decomposition of the Hermite spline spaces. 

Key-Words: - polynomial splines,  non-polynomial splines, Hermite problem 

 

1 Introduction 

Many technical studies are associated with large 

volumes of source information, usually presented as 

a sequence of discrete samples of a gigantic volume 

(106 -1012 numbers). The tasks of extracting useful 

information from such sequences are very difficult 

tasks. The extracted information (called the main 

stream) has a significantly smaller volume and can 

easily be transferred from source to recipient. The 

recipient can evaluate the degree of usefulness of this 

information and decide on the need to obtain the 

original stream or part thereof. Such a problem arises 

in measurements in positioning systems [1], in flight 

control systems of aircraft [2], and in the processing 

and registration of tactile images [3]. This problem 

also arises in more mundane things, for example, 

when processing signals from car suspensions [4]. 

When processing images use the fast discrete Fourier 

transform [5], the problem of quickly transmitting 

basic information  also arises. Large amounts of 

numerical information are used in the design of 

satellites [7], the solution of their maneuvering using 

gravity [8], and among planets and clouds of various 

particles [11] - [12]. A similar problem arises in the 

prediction of various phenomena (see, for example, 

[9] - [10]).. As mentioned above, the solution to this 

problem is to form a much shorter sequence (main 

stream) in which the main information is 

concentrated. Taking into account additional 

characteristics of the initial stream allows improving 

the information content of the main stream. Such 

characteristics may be the rate of change of the 

original stream, expressed by a sequence of different 

relations or a sequence of values of the derivative of 

the original analog signal. It is the use of the 

mentioned values that is proposed in this paper. The 

approach under consideration leads to a Hermitian 

approximation of the first height. 

     Recently, much attention has been paid to the 

application of wavelets to solving various problems. 

As it is known, the wavelet-Galerkin method is a 

useful tool for solving differential equations mainly 

because the conditional number of the stiffness 

matrix is independent of the matrix size and thus the 

number of iterations for solving the discrete problem 

by the conjugate gradient method is small. The 

authors of paper [13] have recently proposed a 
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quadratic spline wavelet basis that has a small 

conditional number and  short support.   The authors 

used this basis in the Galerkin method to solve the 

second-order elliptic problems with Dirichlet 

boundary conditions in one and two dimensions. 

They achieve the 𝐿2-error of order 𝑂(ℎ4), where h is 

the step size, by an appropriate post-processing. The 

rate of convergence is the same as the rate of 

convergence for the Galerkin method with cubic 

spline wavelets. They show theoretically, as well as 

numerically, that the presented method outperforms 

the Galerkin method with other quadratic or cubic 

spline wavelets. Furthermore, they present local post-

processing for example of the equation with Dirac 

measure on the right-hand side. 

In paper [14], to solve the problem of the high 

gradient adaptive analysis of the ship straight 

structure, a meshless local Petrov-Galerkin method 

based on a B-spline wavelet is proposed. The 

approximation function of the structural 

displacement field quantity is solved by employing 

the least squares method and the weighted residual 

method, and the governing equation and stiffness 

equation were established. Based on the meshless 

local Petrov-Galerkin method, an m-order B-spline 

function is used as the wavelet basis function to 

construct the approximation function of the ship 

structure displacement field, and a two-scale 

decomposition technology is used to decompose the 

high gradient component and the low scale 

component in the stress field. The high scale 

component is used to express the high gradient 

component in the stress field. 

Composite materials, with characteristics of light 

weight and high strength, are useful in 

manufacturing. Therefore, precise design and 

analysis is the first key procedure in composite 

applications. Improper analysis or use of composite 

materials may cause serious failures. In paper [15], 

the wavelet finite element method (WFEM) based on 

B-spline wavelet on the interval (BSWI) is 

constructed for the precise analysis of laminated 

plates and shells, which gives a guidance in design 

and application of composite structures. First, FEM 

formulations are derived from the generalized 

potential energy function based on the generalized 

variational principle and virtual work principle. 

Then, BSWI scaling functions are used as an  

interpolation function to discretize the solving 

displacement field variables. At the same time, a 

transformation matrix is constructed and used to 

translate the meaningless wavelet coefficients into 

physical space. At last, the static analysis results can 

be obtained by solving the FEM formulations. 

The authors of paper [16] present a new 

biorthogonal wavelet transform using splines 

performed in a 'lifting' manner. Specifically, 

polynomial splines of different order were used in the 

lifting constructions. They study the influence of the 

order of filters using polynomial splines on image 

compression in order to choose the best wavelet 

transforms. In addition, a comparative study of these 

transforms is done firstly with the biorthogonal B9/7 

transform which is frequently used in image 

compression and secondly with the existing B-spline 

based transforms. They show through experimental 

results that their  proposed wavelet transforms 

outperform the existing ones in image compression. 

In detailed aerodynamic design optimization, a 

large number of design variables in geometry 

parameterization are required to provide sufficient 

flexibility and obtain the potential optimum shape. 

However, with the increasing number of design 

variables, it becomes difficult to maintain the 

smoothness on the surface which consequently 

makes the optimization process progressively 

complex. In paper [17], smoothing methods based on 

B-spline functions are studied to improve the 

smoothness and design efficiency. The wavelet 

smoothing method and the least square smoothing 

method are developed through coordinate 

transformation in a linear space constructed by B-

spline basis functions. In these two methods, 

smoothing is achieved by a mapping from the linear 

space to itself such that the design space remains 

unchanged. A design example is presented where 

aerodynamic optimization of a supercritical airfoil is 

conducted with smoothing methods included in the 

optimization loop. Affirmative results from the 

design example confirm that these two smoothing 

methods can greatly improve quality and efficiency 

compared with the existing conventional non-

smoothing method. 

In paper [18], Hermite wavelets are used to 

develop a numerical procedure for numerical 

solutions of two-dimensional hyperbolic telegraph 

equation. In the first stage, the author rewrote the 

second order hyperbolic telegraph equation as a 

system of partial differential equations by 

introducing a new variable and then using finite 

difference approximation author discretized time-

dependent variables. After that, the Hermite wavelets 

series expansion is used for discretization of space 

variables. With this approach, finding the solution of 

a two-dimensional hyperbolic telegraph equation is 

transformed to finding the solution of two algebraic 

system of equations. The solution of these systems of 

algebraic equations gives Hermite wavelet 

coefficients. Then by inserting these coefficients into 
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the Hermite wavelet series expansion, numerical 

solutions can be acquired consecutively. The main 

goal of this paper is to indicate that the Hermite 

wavelet-based method is suitable and efficient for a 

two-dimensional hyperbolic telegraph equation as 

well as other types of hyperbolic partial differential 

equations such as wave and sinh-Gordon equations. 

The obtained results corroborate the applicability and 

efficiency of the proposed method. 

To numerically solve the Burgers’ equation, in this 

paper [19] the authors propose a general method for 

constructing wavelet bases on the interval [0,1] 

derived from symmetric biorthogonal multiwavelets 

on the real line. In particular, they obtain wavelet 

bases with simple structures on the interval [0,1] 

from the Hermite cubic splines. In comparison with 

all other known constructed wavelets on the interval 

[0,1], the authors constructed wavelet bases on the 

interval [0,1] from the Hermite cubic splines. The 

result not only has good approximation and 

symmetry properties with extremely short supports, 

but also employs a minimum number of boundary 

wavelets with a very simple structure. These 

desirable properties make them to be of particular 

interest in numerical algorithms. They constructed 

wavelet bases on the interval [0,1] which are then 

used to solve the nonlinear Burgers’ equation. The 

method is based on the finite difference formula 

combined with the collocation method. Therefore, 

the proposed numerical scheme in this paper is 

abbreviated as MFDCM (Mixed Finite Difference 

and Collocation Method). Some numerical examples 

are provided to demonstrate the validity and 

applicability of the proposed method which can be 

easily implemented to produce a desired accuracy. 

In [20] for cubic splines with nonuniform nodes, 

which  split with respect to the even and odd nodes, 

these cubic splines are used to obtain a wavelet 

expansion algorithm in the form of the solution to a 

three-diagonal system of linear algebraic equations 

for the coefficients. Computations by hand are used 

to investigate the application of this algorithm for 

numerical differentiation. The results are illustrated 

by solving a prediction problem. 

The overview presented here shows the 

importance of taking into account the smoothness for 

the discussed functions and their derivatives. This 

paper, discusses spaces of polynomial and 

nonpolynomial splines suitable for solving the 

Hermite interpolation problem (with first-order 

derivatives) and for constructing a wavelet 

decomposition. Such splines we call Hermitian type 

splines of the first level. The basis of these splines is 

obtained from the approximation relations under the 

condition connected with the minimum of 

multiplicity of  covering every point of (α, β) (almost 

everywhere) with the support  of the basis splines. 

Thus these splines belong to the class of minimal 

splines. This paper is ideologically similar to the 

papers  [21], in which the spaces of the splines of the 

Lagrangian type are constructed. 

Here we consider the processing of flows that 

include a stream of values of the derivative of an 

approximated function which is very important for 

good approximation. Also we construct a splash 

decomposition of the Hermitian type splines on a 

non-uniform grid.  

The approximation and interpolation formulas for 

the stream under consideration are constructed. The 

obtained basis functions have compact support, and 

the addition of one node leads to an increase in the 

dimension of the spline space by two units (two basic 

wavelets are added to the previous basis). Sometimes 

to discuss the situation connected with a segment 

[a,b] ⊂ (α,β) is difficult.\Therefore we can solve this 

problem using our method by restricting all functions 

on the segment.  

2 Splines of the Hermit Type 

Let 𝜑(𝑡) = ([𝜑]0(𝑡), [𝜑]1(𝑡), [𝜑]2(𝑡), [𝜑]3(𝑡))𝑇 be 

a four-component vector function with components 

[𝜑]𝑖(𝑡) from space 𝐶1(α,β), i = 0, 1, 2, 3. Let  

condition (A) be fulfilled: 

(A)          𝑊(x,y;φ)≝det(𝜑(𝑥),φ'(𝑥),φ'(𝑦)) ≠ 0  

∀x,y ∈ (α,β),x ≠ 𝑦. 

Let X be set of nodes such that 

                     𝑋: 𝛼 < ⋯ <x−1<x0<x1 < ⋯ < 𝛽; (1) 

where 𝛼 ≝ lim
𝑗→−∞

𝑥𝑗, 𝛽 ≝ lim
𝑗→+∞

𝑥𝑗. 

 

Let us denote 

 G≝ ∪ (𝑥𝑗,xj+1)𝑗∈ℤ ,φ𝑗≝φ(𝑥𝑗),φ'𝑗≝φ'(𝑥𝑗).  

Suppose functions 𝜔𝑗(𝑡), t ∈ 𝐺,j ∈ ℤ, are the 

solution of the system of equations, which we call the 

approximation relations 

                ∑(φ'j+1𝜔2𝑗−1(𝑡)+φj+1𝜔2𝑗(𝑡))=φ(𝑡). (2) 

Here we suppose that 

                 
suppω2j−1 ⊂ [𝑥𝑗 ,xj+2],

suppω2j ⊂ [𝑥𝑗,xj+2]∀𝑗 ∈ ℤ.
 (3) 
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We obtain from (2) - (3) for 𝑡 ∈ (𝑥𝑘 ,xk+1) with fixed 

𝑘 ∈ ℤ 

                 
φ'

𝑘
𝜔2𝑘−3(𝑡)+φ

𝑘
𝜔2𝑘−2(𝑡)+

+φ'
k+1

𝜔2𝑘−1(𝑡)+φ
k+1

𝜔2𝑘(𝑡)=φ(𝑡).
(4) 

Due to property (A), the solution of system (4) is 

unique. Let 𝑡 ∈ (𝑥𝑘,xk+1). In this case the solution of 

the system can be written in the form: 

𝜔2𝑘−3(𝑡) =
det(φ(𝑡),φk,φ'k+1,φk+1)

det(φ'𝑘 ,φ𝑘 ,φ'k+1,φk+1)
, 

𝜔2𝑘−2(𝑡) =
det(φ'𝑘φ(𝑡),φ'k+1,φk+1)

det(φ'𝑘 ,φ𝑘 ,φ'k+1,φk+1)
, 

𝜔2𝑘−1(𝑡) =
det(φ'𝑘,φ𝑘 ,φ(𝑡),φk+1)

det(φ'𝑘,φ𝑘 ,φ'k+1,φk+1)
, 

𝜔2𝑘(𝑡) =
det(φ'𝑘 ,φ𝑘,φ'k+1,φ(𝑡))

det(φ'𝑘 ,φ𝑘,φ'k+1,φk+1)
. 

Now if k = q, k = q+1, we get for any 𝑞 ∈ ℤ: 

𝜔2𝑞−1(𝑡) =
det(φ'𝑞 ,φ𝑞 ,φ(𝑡),φq+1)

det(φ'𝑞 ,φ𝑞 ,φ'q+1,φq+1)
, 

(5) 

for  𝑡 ∈ (𝑥𝑞 ,xq+1), 

𝜔2𝑞−1(𝑡) =
det (𝜑(𝑡),φq+1,φ'q+2,φq+2)

det (φ'q+1,φq+1,φ'q+2,φq+2)
, 

   (6) 

for  𝑡 ∈ (𝑥q+1,xq+2), 

𝜔2𝑞(𝑡) =
det(φ'𝑞 ,φ𝑞 ,φ'q+1,φ(𝑡))

det(φ'𝑞 ,φ𝑞 ,φ'q+1,φq+1)
, 

 (7) 

for 𝑡 ∈ (𝑥𝑞 ,xq+1), 

   

𝜔2𝑞(𝑡) =
det(φ'q+1,φ(𝑡),φ'q+2,φq+2)

det(φ'q+1,φq+1,φ'q+2,φq+2)
, 

 (8) 

for  𝑡 ∈ (𝑥q+1,xq+2). 

 

 

Figure 1: The plot of the basis spline 𝜔2𝑞−1(𝑡) 

(left), the plot of the basis spline 𝜔2𝑞(𝑡) (right) 

 

Plots of the basis spline 𝜔2𝑞−1(𝑡) and 𝜔2𝑞(𝑡) are 

shown in Figure 1. 

 

Theorem 1. Let 𝜑 ∈ 𝐶1(α,β) and let condition 

(А) be fulfilled; then for any 𝑞 ∈ 𝑍 functions 

𝜔2𝑞−1(𝑡) и 𝜔2𝑞(𝑡), which are given by (3) and  (5) 

– (8), can be continued by continuity for the entire 

interval (α,β)  to class functions C1(α,β). In addition, 

the following relations are valid: 

  𝜔2𝑞−1(𝑥𝑞) = 0, 𝜔2𝑞−1(𝑥q+1) = 0, 𝜔2𝑞−1(𝑥q+2) =

0, (9) 

 𝜔'2q−1(𝑥𝑞) = 0, 𝜔'2q−1(𝑥q+1) = 1,  𝜔'2q−1(𝑥q+2) =

0, (10) 

          𝜔2𝑞(𝑥𝑞) = 0, 𝜔2𝑞(𝑥q+1) = 1,𝜔2𝑞(𝑥q+2) = 0,

 (11) 

     𝜔′2𝑞(𝑥𝑞) = 0, 𝜔′2𝑞(𝑥q+1) = 1,𝜔′2𝑞(𝑥q+2) = 0,

 (12) 

where previous designations are used for continued 

functions. 

Proof. Calculating the corresponding one-sided 

limits from the functions ω2q-1(t)  and ω2q(t)  and their 

derivatives at nodes хq, xq+1 and xq+2 with the help of 

representations (3) and (5) - (8), we conclude that all 

the statements in the theorem are valid (see also [21]). 

Remark 1. If the components [𝜑(𝑡)]𝑖 of the 

vector  𝜑(𝑡) are given by the equations [𝜑(𝑡)]𝑖=t𝑖,  
then the functions ω2q-1(t) and ω2q(t) represent the 

known interpolation basis of the cubic Hermitian 

spline space. 

The space 

𝑆𝜑
1 (𝑋) ≝ {𝑢|u=∑𝑐𝑗𝜔𝑗  ∀𝑐𝑗 ∈ ℝ1,𝑗 ∈ ℤ} 

is called the spline space of Hermitian type (of the 

first level). In view of the property (A), the functions 

𝜔𝑗, 𝑗 ∈ ℤ, are linearly independent. The set 𝜔𝑗, 𝑗 ∈ ℤ,   

is called the main basis of the space 𝑆𝜑
1 (𝑋). 

Remark 2. Relations (9) - (12) can be written in  

the form 

  𝜔2𝑠−1(𝑥𝑗) = 0,ω'2s−1(𝑥𝑗)=δs+1,j,  (13) 

   𝜔2𝑠(𝑥𝑗)=δs+1,j, ω'2s(𝑥𝑗) = 0∀s, j ∈ ℤ. (14) 

3 Calibration relations for the 

Hermitian type splines 

In the set X, consider the subset Y: 

Y: … < y-2 < y-1 < y0 < y1 < y2 <… 
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lim
𝑗→−∞

𝑦𝑗 = 𝛼,   lim
𝑗→+∞

𝑦𝑗 = 𝛽 . 

Let χ(s)   denote a monotonically increasing integer 

function such that 

                                       𝑦𝑗=x𝜒(𝑗). (15) 

Let ℤ𝜒=χ(ℤ). The introduced function is reversible 

on ℤ𝜒 and generates the map 𝑌↦X which is the 

embedding of Y in X. Repeating constructions (2) – 

(8) using the newly introduced grid Y, the functions 

wj, for which 

                 

supp 𝑤2𝑗−1 ⊂ [𝑦𝑗 ,y
j+2

],

supp 𝑤2𝑗 ⊂ [𝑦𝑗,y
j+2] ∀𝑗 ∈ ℤ.

 (16) 

For a fixed 𝑖 ∈ 𝑍 for 𝑡 ∈ (𝑦𝑖 ,y
i+1

), by analogy with 

(4) we have 

              
v'𝑖𝑤2𝑖−3(𝑡)+v𝑖𝑤2𝑖−2(𝑡)+

+v'i+1𝑤2𝑖−1(𝑡)+vi+1𝑤2𝑖(𝑡)=φ(𝑡),
 (17) 

where 𝑣𝑗 = φ(𝑦𝑗),   v'𝑗 = φ'(𝑦𝑗),   ∀𝑗 ∈ ℤ. 

We find from relations (16) – (17) for 𝑝 ∈ ℤ 

            

𝑤2𝑝−1(𝑡) =
det(𝑣′𝑝, 𝑣𝑝, 𝜑(𝑡), 𝑣𝑝+1)

det(𝑣′𝑝, 𝑣𝑝, 𝑣′𝑝+1, 𝑣𝑝+1)
, 

 (18) 

for 𝑡 ∈ (𝑦𝑝, 𝑦𝑝+1), 

 

𝑤2𝑝−1(𝑡) =
det(𝜑(𝑡), 𝑣𝑝+1, 𝑣′𝑝+2, 𝑣𝑝+2)

det(𝑣′𝑝+1, 𝑣𝑝+1, 𝑣′𝑝+2, 𝑣𝑝+2)
, 

 (19) 

for 𝑡 ∈ (𝑦𝑝+1, 𝑦𝑝+2), 

             

𝑤2𝑝(𝑡) =
det(𝑣′𝑝, 𝑣𝑝, 𝑣′𝑝+1, 𝜑(𝑡))

det(𝑣′𝑝, 𝑣𝑝, 𝑣′𝑝+1, 𝑣𝑝+1)
 

 (20) 

for 𝑡 ∈ (𝑦𝑝, 𝑦𝑝+1), 

         

𝑤2𝑝(𝑡) =
det(𝑣′𝑝+1, 𝜑(𝑡), 𝑣′𝑝+2, 𝑣𝑝+2)

det(𝑣′𝑝+1, 𝑣𝑝+1, 𝑣′𝑝+2, 𝑣𝑝+2)
 

 (21) 

for 𝑡 ∈ (𝑦𝑝+1, 𝑦𝑝+2). 

It can be shown that for functions (18) – (21)  the 

following equations are valid, they are similar to (13) 

– (14) 

           𝑤2𝑠−1(𝑦𝑗) = 0, 𝑤′2𝑠−1(𝑦𝑗) = 𝛿𝑠+1,𝑗, (22) 

      𝑤2𝑠(𝑦𝑗) = 𝛿𝑠+1,𝑗,  𝑤′2𝑠(𝑦𝑗) = 0 ∀𝑠, 𝑗 ∈ ℤ (23) 

Let q = χ(i), q + k = χ(i + 1), so that between 

nodes yi and yi+1 there are nodes xj, j = q + 1, 

q + 2, …, q + k - 1: 

          𝑦𝑖 = 𝑥𝑞 < 𝑥𝑞+1 < 𝑥𝑞+2 <. . . < 𝑥𝑞+𝑘−1 <

𝑥𝑞+𝑘 = 𝑦𝑖+1. (24) 

 

Figure 2: The basis splines 𝜔2𝑞−1(𝑡)  after removing 

one node. 

The basis splines 𝜔2𝑞−1(𝑡)  after removing one node 

are shown in Figure 2: It was shown in [21] that if 

one node is removed from the original grid, the 

coordinate functions wj  associated with the new grid 

are linear combinations of the original (the 

mentioned linear combinations are called gauge 

relations). It follows that when a group of nodes is 

deleted, the corresponding coordinate functions will 

also have this property. To determine the coefficients 

of the gauge relations, we use the biorthogonal 

system of functionals represented by formulas (22) – 

(23). Thus, taking into account the arrangement of the 

supports of the functions wj, 𝑗 ∈ {2𝑖 − 3, 2𝑖 − 2, 2𝑖 −
1, 2𝑖} and the functions ω2s-3, ω2s-2, ω2s-1, ω2s , (see 

formulas (3)), for 𝑡 ∈ (𝑦𝑖 , 𝑦𝑖+1) and we have the 

representations 

   𝑤𝑗(𝑡) =

∑ (𝑐2𝑠−1
(𝑗)

𝜔2𝑠−1(𝑡)+𝑐2𝑠
(𝑗)

𝜔2𝑠(𝑡))(𝑦𝑖,𝑦𝑖+1)∩(𝑥𝑠,𝑥𝑠+2)≠∅ ,

 (25) 

where 𝑗 ∈ {2𝑖 − 3, 2𝑖 − 2, 2𝑖 − 1, 2𝑖}. 
The following statement is true. 

Theorem 2. Let i be a fixed integer and 

k = χ(i + 1) - χ(i) + 1. Under these conditions, when 

𝑡 ∈ (𝑦𝑖 , 𝑦𝑖+1), the following relations are true 

   
𝑤𝑗(𝑡) =

= ∑ (𝑤′𝑗(𝑥𝑠+1)𝜔2𝑠−1(𝑡)+𝑤𝑗(𝑥𝑠+1)𝜔2𝑠(𝑡))
𝑞+𝑘−1
𝑠=𝑞−1 ,

 (26) 

where 𝑗 ∈ {2𝑖 − 3,2𝑖 − 2,2𝑖 − 1,2𝑖}, q = χ(i). 

 

Proof. Relation (25) can be rewritten as 
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      𝑤𝑗(𝑡) = ∑ (𝑐2𝑠−1
(𝑗)

𝜔2𝑠−1(𝑡)+𝑐2𝑠
(𝑗)

𝜔2𝑠(𝑡))
𝑞+𝑘−1
𝑠=𝑞−1 ,

 (27) 

where 𝑗 ∈ {2𝑖 − 3,2𝑖 − 2,2𝑖 − 1,2𝑖}. 
Substituting t = xr, 𝑟 ∈ {q, q+1, … ,q+k}  into formula 

(27), we have 

𝑤𝑗(𝑥𝑟) = ∑ (𝑐2𝑠−1
(𝑗)

𝜔2𝑠−1(𝑥𝑟)+𝑐2𝑠
(𝑗)

𝜔2𝑠(𝑥𝑟))
𝑞+𝑘−1
𝑠=𝑞−1 .

 (28) 

Using the relations 

ω2s-1(xr) = 0, ω2s(xr) = δs+1,r, 

we find only one nonzero term on the right-hand side 

of (28); thus, we find a term with the index s = r - 1: 

𝑤𝑗(𝑥𝑟)=c2r−2
(𝑗)

𝜔2𝑟−2(𝑥𝑟)=c2r−2
(𝑗)

. 

So, 

     𝑐2𝑠
(𝑗)

= 𝑤𝑗(𝑥𝑠+1)  ∀𝑠 ∈ {𝑞 − 1, 𝑞, . . . , 𝑞+𝑘 − 1}.

 (29) 

Differentiating relation (29) and substituting t = xr 

into the obtained identity, we find 

 𝑤′𝑗(𝑥𝑟) = ∑ (𝑐2𝑠−1
(𝑗)

𝜔′2𝑠−1(𝑥𝑟) +
𝑞+𝑘−1
𝑠=𝑞−1

𝑐2𝑠
(𝑗)

𝜔′2𝑠(𝑥𝑟)). (30) 

Considering the relations ω'2s−1(𝑥𝑟)=δs+1,r, 

𝜔2𝑠(𝑥𝑟) = 0, we see that on the right side of the 

equation (30) there is perhaps only one nonzero term 

(in this case, it is the first one), thus, we find a term 

with the subscript s = r – 1. Thus, we have 𝑤′𝑗(𝑥𝑟) =

𝑐2𝑟−3
(𝑗)

 and 

𝑐2𝑠−1
(𝑗)

= 𝑤′𝑗(𝑥𝑠+1) ∀𝑠 ∈ {𝑞 − 1, 𝑞, . . . , 𝑞 + 𝑘 − 1}.

 (31) 

Substituting (29) and (31) into (27), we find relations 

(26). 

 
Theorem 3. Under the conditions of Theorem 2, 

relations (26) can be represented in the form 

                 

𝑤2𝑖−3(𝑡) = 𝜔2𝑞−3(𝑡)+

+∑ 𝑤′2𝑖−3(𝑥𝑠′)𝜔2𝑠′−3(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 +

+∑ 𝑤2𝑖−3(𝑥𝑠′)𝜔2𝑠′−2(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 .

 (32) 

                    

𝑤2𝑖−2(𝑡) = 𝜔2𝑞−2(𝑡)+

+∑ 𝑤′2𝑖−2(𝑥𝑠′)𝜔2𝑠′−3(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 +

+∑ 𝑤2𝑖−2(𝑥𝑠′)𝜔2𝑠′−2(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 .

 (33) 

           

𝑤2𝑖−1(𝑡) = ∑ 𝑤′2𝑖−1(𝑥𝑠′)𝜔2𝑠′−3(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 +

+∑ 𝑤2𝑖−1(𝑥𝑠′)𝜔2𝑠′−1(𝑡)+𝜔2𝑞+2𝑘−3(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 .

 (34) 

         
𝑤2𝑖(𝑡) = ∑ 𝑤′2𝑖(𝑥𝑠′)𝜔2𝑠′−3(𝑡)

𝑞+𝑘−1
𝑠′=𝑞+1 +

+∑ 𝑤2𝑖(𝑥𝑠′)𝜔2𝑠′−2(𝑡)+𝜔2𝑞+2𝑘−2(𝑡)
𝑞+𝑘−1
𝑠′=𝑞+1 .

 (35) 

Proof. Formula (26) can be represented as 

𝑤𝑗(𝑡) = 𝑤’𝑗(𝑥𝑞)𝜔2𝑞−3(𝑡)+𝑤𝑗(𝑥𝑞)𝜔2𝑞−2(𝑡)+

+ ∑ (𝑤′𝑗(𝑥𝑠+1)𝜔2𝑠−1(𝑡)+𝑤𝑗(𝑥𝑠+1)𝜔2𝑠(𝑡))

𝑞+𝑘−2

𝑠=𝑞

+

+𝑤′𝑗(𝑥𝑞+𝑘)𝜔2𝑞+2𝑘−3(𝑡)+𝑤𝑗(𝑥𝑞+𝑘)𝜔2𝑞+2𝑘−2(𝑡);

 

considering that xq = yi and xq+k = yi+1 we get 

      
𝑤𝑗(𝑡) = 𝑤′𝑗(𝑦𝑖)𝜔2𝑞−3(𝑡)+𝑤𝑗(𝑦𝑖)𝜔2𝑞−2(𝑡)+

+ ∑ (𝑤′𝑗(𝑥𝑠+1)𝜔2𝑠−1(𝑡)+𝑤𝑗(𝑥𝑠+1)𝜔2𝑠(𝑡))
𝑞+𝑘−2
𝑠=𝑞 +

+𝑤′𝑗(𝑦𝑖+1)𝜔2𝑞+2𝑘−3(𝑡)+𝑤𝑗(𝑦𝑖+1)𝜔2𝑞+2𝑘−2(𝑡).

 (36) 

From formula (36) with j = 2i – 3, we have 

               

𝑤2𝑖−3(𝑡) = 𝑤′2𝑖−3(𝑦𝑖)𝜔2𝑞−3(𝑡)+

+𝑤2𝑖−3(𝑦𝑖)𝜔2𝑞−2(𝑡)+

+ ∑ 𝑤′2𝑖−3(𝑥𝑠+1)𝜔2𝑠−1(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+ ∑ 𝑤2𝑖−3(𝑥𝑠+1)𝜔2𝑠(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+𝑤′2𝑖−3(𝑦𝑖+1)𝜔2𝑞+2𝑘−3(𝑡)+

+𝑤2𝑖−3(𝑦𝑖+1)𝜔2𝑞+2𝑘−2(𝑡).

 (37) 

By formulas  (22) – (23) we  get: 

𝑤′2𝑖−3(𝑦𝑖) = 1, 

𝑤2𝑖−3(𝑦𝑖) = 𝑤′2𝑖−3(𝑦𝑖+1) = 𝑤2𝑖−3(𝑦𝑖+1) = 0, 

and therefore identity (37) can be given the form (32). 

When j = 2i – 2, the identity (36) takes the form 

                    

𝑤2𝑖−2(𝑡) = 𝑤′2𝑖−2(𝑦𝑖)𝜔2𝑞−3(𝑡)+

+𝑤2𝑖−2(𝑦𝑖)𝜔2𝑞−2(𝑡)+

+ ∑ 𝑤′2𝑖−2(𝑥𝑠+1)𝜔2𝑠−1(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+ ∑ 𝑤2𝑖−2(𝑥𝑠+1)𝜔2𝑠(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+𝑤′2𝑖−2(𝑦𝑖+1)𝜔2𝑞+2𝑘−3(𝑡)+

+𝑤2𝑖−2(𝑦𝑖+1)𝜔𝑞+2𝑘−2(𝑡).

 (38) 

using equalities (22) – (23), we find 

𝑤′2𝑖−2(𝑦𝑖) = 0, 𝑤2𝑖−2(𝑦𝑖) = 1, 
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𝑤′2𝑖−2(𝑦𝑖+1) = 𝑤2𝑖−2(𝑦𝑖+1) = 0, 

so from (38) we derive the formula (33). Consider 

(36) with j = 2i – 1: 

          

𝑤2𝑖−1(𝑡) = 𝑤′2𝑖−1(𝑦𝑖)𝜔2𝑞−3(𝑡)+

+𝑤2𝑖−1(𝑦𝑖)𝜔2𝑞−2(𝑡)+

+ ∑ 𝑤′2𝑖−1(𝑥𝑠+1)𝜔2𝑠−1(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+ ∑ 𝑤2𝑖−1(𝑥𝑠+1)𝜔2𝑠(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+𝑤′2𝑖−1(𝑦𝑖+1)𝜔2𝑞+2𝑘−3(𝑡)+

+𝑤2𝑖−1(𝑦𝑖+1)𝜔2𝑞+2𝑘−2(𝑡).

 (39) 

Using (22) – (23), we have 

𝑤′2𝑖(𝑦𝑖) = 𝑤2𝑖(𝑦𝑖) = 𝑤′2𝑖(𝑦𝑖+1) = 0, 

𝑤2𝑖−1(𝑦𝑖+1) = 0, 

from (39) we find the relation (34). Finally, consider 

the case j = 2i; in this case (36) takes the form: 

        

𝑤2𝑖(𝑡) = 𝑤′2𝑖(𝑦𝑖)𝜔2𝑞−3(𝑡)+

+𝑤2𝑖(𝑦𝑖)𝜔2𝑞−2(𝑡)+

+ ∑ 𝑤′2𝑖(𝑥𝑠+1)𝜔2𝑠−1(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+ ∑ 𝑤2𝑖(𝑥𝑠+1)𝜔2𝑠(𝑡)
𝑞+𝑘−2
𝑠=𝑞 +

+𝑤′2𝑖(𝑦𝑖+1)𝜔2𝑞+2𝑘−3(𝑡)+

+𝑤2𝑖(𝑦𝑖+1)𝜔2𝑞+2𝑘−2(𝑡).

       (40) 

From (22) - (23) we get 

𝑤′2𝑖(𝑦𝑖) = 𝑤2𝑖(𝑦𝑖) = 𝑤′2𝑖(𝑦𝑖+1) = 0, 

𝑤2𝑖(𝑦𝑖+1) = 1, 

and therefore (39) can be represented in the form 

(35). 

This completes the proof. 

Corollary 1. If the conditions of Theorem 3 are 

satisfied, and k = 2, then the relations can be given 

the form 

      
𝑤2𝑖−3(𝑡)=ù2𝑞−2(𝑡)+w'2𝑖−3(𝑥q+1)𝜔2𝑞−1(𝑡)+

+w2𝑖−3(𝑥q+1)𝜔2𝑞(𝑡).

 (41) 

     
𝑤2𝑖−2(𝑡)=ù2𝑞−2(𝑡)+w'2𝑖−2(𝑥q+1)𝜔2𝑞−1(𝑡)+

+w2𝑖−2(𝑥q+1)𝜔2𝑞(𝑡),
(42) 

                
𝑤2𝑖−1(𝑡)=w'2𝑖−1(𝑥q+1)𝜔2𝑞−1(𝑡)

+w2𝑖−1(𝑥q+1)𝜔2𝑞(𝑡)+ù2q+1(𝑡),
 (43) 

                    
𝑤2𝑖(𝑡)=w'2𝑖(𝑥q+1)𝜔2𝑞−1(𝑡)

+w2𝑖(𝑥q+1)𝜔2𝑞(𝑡)+ù2q+2(𝑡).
 (44) 

Proof. Putting k = 2 in relations (32), (33), (34), 

(35) we obtain the identities (41), (42), (43), (44), 

respectively. 

Remark 3. In an algorithmic implementation, it is 

useful to remember that the case k = 1 corresponds to  

mapping χ, in which there are no nodes of grid X 

between the nodes yi and yi+1, i.e. χ(i) = q, 

χ(i + 1) = q+1, so that yi = xq, yi+1 = xq+1 (see (15) and 

(24)); Moreover, if we assume that for m > n, 

expression  ∑ 𝑎𝑗
𝑛
𝑗=𝑚  equals zero (by definition) then 

the formulas of Theorems 2 and 3 are also valid in the 

case of k = 1. 

Now we assume that q = χ(i), q + k = χ(i + 1), 

q - k′=χ(i - 1), so that there are nodes xj, j = q - 1, 

q - 2, …, q - k + 1, between nodes yi-1 and yi, and there 

are nodes xj, j = q + 1, q + 2, …, q + k – 1, between 

nodes yi and yi+1: 

       
𝑦𝑖−1=x𝑞−𝑘′<x𝑞−𝑘′+1< … <x𝑞−2<x𝑞−1<y

𝑖
=

=x𝑞<xq+1<𝑥𝑞+2< … <𝑥𝑞+𝑘−1<𝑥𝑞+𝑘 = 𝑦𝑖+1
 (45) 

Theorem 4. If condition (A) is satisfied, and 𝑡 ∈
(𝛼, 𝛽) then for any 𝑖 ∈ ℤ the following relations are 

valid: 

𝑤𝑗(𝑡) =

∑ (w'𝑗(𝑥s+1)𝜔2𝑠−1(𝑡)+w𝑗(𝑥s+1)𝜔2𝑠(𝑡))
q+k−2
s=q' , (46) 

where 𝑗 ∈ {2𝑖 − 3,2𝑖 − 2}, q =χ(i), q′= χ(i - 1), 

k =χ(i + 1). 

Proof. The support of the functions wj, j = 2i - 3, 

2i - 2 is located on the segment [yi-1, yi+1]. When 𝑡 ∈
(𝑦𝑖,yi+1

) formula (46) is valid according to Theorem 

2. Consider the interval 𝑡 ∈ (𝑦𝑖−1,y
𝑖
). Replacing in 

Theorem 2 i by i - 1, q by q′, and k by k' ≝ 𝜒(𝑖) −
𝜒(𝑖 − 1), we have 

   
𝑤𝑗(𝑡) =

= ∑ (w'𝑗(𝑥s'+1)𝜔2s'−1(𝑡)+w𝑗(𝑥s'+1)𝜔2s'(𝑡))
q'+k'−1
s'=q'−1 .

 (47) 

Note that, according to the notation (45), the nodes 

𝑥𝑞′+k′and 𝑥𝑘 coincide with the node yi, and 𝑞′+k′=k. 

Therefore, in the sum (47), the term corresponding to 

the index 𝑠′=q′+k′ − 1 coincides with the term in the 

sum (26) calculated for the index s = q – 1. There are 

no other common terms in these sums. Considering 

this circumstance and the fact that at the ends of the 

interval [𝑦𝑖,yi+1
] the corresponding terms are equal 

to zero, we conclude that the union of the sums (26) 

and (47) leads to the formula (46). 

Remark 4. Introducing the replacement index 

𝑖′=i − 1, we get 
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              q=χ(i'+1), q'=χ(i'), k=χ(i'+2) − 𝑞. (48) 

If we put 𝑠′=s+1, then the formula (46) can be written 

in the following equivalent form 

   

𝑤𝑗(𝑡) =

= ∑ (w'𝑗(𝑥s')𝜔2s'−3(𝑡)+w𝑗(𝑥s')𝜔2s'−2(𝑡))
q+k−1
s'=q'+1 ,

𝑗 ∈ {2𝑖′ − 1,2𝑖′}, 𝑖′ ∈ ℤ.
 (49) 

For each 𝑖 ∈ ℤ we consider 𝑗 ∈ {2𝑖 − 1,2𝑖} and 

consider 

             q=χ(i+1),q'=χ(𝑖),k=χ(i+2) − 𝑞. (50) 

Using (49) we have 

𝑤𝑗(𝑡) =

= ∑ (w'𝑗(𝑥𝑠)𝜔2𝑠−3(𝑡)+w𝑗(𝑥𝑠)𝜔2𝑠−2(𝑡))

𝜒(i+2)

s=χ(𝑖)

. 

Since it is obvious that w'𝑗(𝑥𝜒(𝑖))=w′𝑗(𝑥𝜒(i+2)) = 0 

and 𝑤𝑗(𝑥𝜒(𝑖))=w𝑗(𝑥𝜒(i+2)) = 0, so the previous 

relation can be written as 

       
𝑤𝑗(𝑡) =

= ∑ (w'𝑗(𝑥𝑠)𝜔2𝑠−3(𝑡)+w𝑗(𝑥𝑠)𝜔2𝑠−2(𝑡))
𝜒(i+2)−1
s=χ(𝑖)+1 .

 (51) 

For each 𝑖 ∈ ℤ, 𝑗 ∈ {2𝑖 − 1,2𝑖} consider the 

numbers pj,k for every 𝑘 ∈ ℤ  determined by the 

relations 

               
𝑝𝑗,2𝜎−3=w'𝑗(𝑥𝜎), p

𝑗,2𝜎−2
=w𝑗(𝑥𝜎)

∀𝜎 ∈ {𝜒(𝑖) + 1, … ,χ(i+2) − 1},
 (52) 

and the numbers not mentioned in this list pj,k  will be 

considered as equal to zero: 

       
𝑝𝑗,𝑘 = 0  ∀𝑗 ∈ ℤ

∀𝑘 ∉ {2𝜒(𝑖) − 1,2𝜒(𝑖), … ,2𝜒(i+2) − 4}.
 (53) 

We denote P an infinite matrix, 𝑃 = (𝑝𝑗𝑘)
j,k∈Z

,  

whose elements are given by equations (52) - (53). 

Thus, the row of the matrix P with the number 2i - 1 

is 

… ,w′2𝑖−1(𝑥𝜒(i+2)−1),w2𝑖−1(𝑥𝜒(i+2)−1), 0,0, … ,

… ,0,0,w'2𝑖−1(𝑥𝜒(𝑖)+1),w2𝑖−1(𝑥𝜒(𝑖)+1), … ,
 

and the next row (row with number 2i) differs from 

the mentioned one only by the fact that w2i-1  should 

be written instead of w2i everywhere. The numbers of 

the columns in which these nonzero elements are 

located are as follows. 

        
2𝜒(𝑖) − 1,2𝜒(𝑖),2𝜒(𝑖) + 1,2𝜒(𝑖) + 2, …

. . . ,2𝜒(i+2) − 5,2𝜒(i+2) − 4;
 (54) 

the total number of such columns is 

2(χ(i+2) - χ(i)) - 2. 

If i is replaced by i + 1, then it is necessary to 

consider rows with numbers 𝑗 ∈ {2i+1,2i+2}; the sets 

of their nonzero elements will shift so that their 

beginning will be in the column with the number 

2χ(i + 1) - 1: 

   
2𝜒(i+1) − 1,2𝜒(i+1),2𝜒(i+1)+1,

2𝜒(𝑖+1)+2, … ,2𝜒(i+3) − 5,2𝜒(i+3) − 4
 (55) 

The numbers of the common columns in (54) and 

(55) are as the follows 

2𝜒(i+1) − 1,2𝜒(i+1),2𝜒(i+1)+1,

2𝜒(𝑖+1)+2, … ,2𝜒(i+2) − 5,2𝜒(i+2) − 4.
  

Since the multiplicity of the covering by the 

supports of the coordinate functions wj is equal to 

four, the columns of this matrix contain no more than 

four nonzero elements (in consecutive four rows), 

and the matrix itself has an obvious stepped structure. 

 

4 Hermite splines on a more frequent 

grid 

In the previous paragraph, the Hermitian splines 

were considered  on a rarer grid of nodes. It is 

often required to make the grid more frequent. Let 

𝑑 be some new node added to the grid (1), so that 𝑑 ∈
(𝑥𝑘 , 𝑥𝑘+1). Let us denote 𝑠𝑗 – nodes of the  new grid 

which has been constructed: 

.

2 where

 where

1

1

Z}j|{s=S

,+kj,x=s

d,=s

k,j,x=s

j

jj

+k

jj



 

 

−

 (56) 

Let ( ) ( ).sφ'=f',sφ=f jjjj  Using the new grid S 

which has been introduced we construct the functions 

𝑟j . Here we use the next formulas that are similar to  

formulas (5) – (8): 

       ( )
( )( )

( )
,

f,f',f,f'

f,tφ,f,f'
=tr

+q+qqq

+qqq

q

11

1

12
det

det
−  (57) 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS

Yu. K. Dem’yanovich, I. G. Burova, 
T. O. Evdokimova, A. V. Lebedeva, 

A. G. Doronina

E-ISSN: 2224-3429 229 Volume 14, 2019



for ( ),s,st +qq 1  

          ( )
( )( )

( )
,

f,f',f,f'

f,f',f,tφ
=tr

+q+q+q+q

+q+q+q

q

2211

221

12
det

det
−  (58) 

for ( ),s,st +q+q 21  

              ( )
( )( )

( )
,

f,f',f,f'

tφ,f',f,f'
=tr

+q+qqq

+qqq

q

11

1

2
det

det
 (59) 

for ( ),s,st +q+q 21  

          ( )
( )( )

( )
,

f,f',f,f'

f,f',tφ,f'
=tr

+q+q+q+q

+q+q+q

q

2211

221

2
det

det
 (60) 

for ( ).s,st +q+q 21  

5 Biorthogonal system of functionals 

and their meanings on functions rj 

Over the space ( )βα,1C  we consider a system of 

linear functionals 
( ) ,}{g Zi

i

 that is defined by the 

relations: 

( )  ( )
( )  ( ) .   

 

1

2

1

12

Zqxu=u,g

,xu'=u,g

+q

q

+q

q



−

 

Using formulas (9) – (12), we have 

                             
( )  .=ω,g ji,j

i δ  (61) 

Let 
( )

Zi

i }{h   be a system of linear functionals. 

( )  ( )
( )  ( ) Z;qsu=u,h

,su'=u,h

+q

q

+q

q



−

 

 

1

2

1

12

 

We obtain in a way similar to relations (61) 

( )  .=r,h ji,j

i δ  

Now we have 
( )  

( )    ( )    ( )    ( )    ( ) ,,g,,g,,g,,g=

=,g

T
iiii

i

3210
φφφφ

φ
 

( )  

( )    ( )    ( )    ( )    ( ) ,,h,,h,,h,,h=

=,h

T
iiii

i

3210
φφφφ

φ
 

We also  obtain  

        
( )  ( )  ;=,g,'=,g +q

q

+q

q

1

2

1

12 φφ φφ−
 (62) 

and 

         
( )  ( )  .φ φ 1

2

1

12

+q

q

+q

q v=,h,v'=,h −
 (63) 

Using the relations 

,kq,v'=',v= +q+q+q+q 1 φ φ 1111 −  

we find from (62) – (63) the formulae 

( )  ( )  

( )  ( )  1. whereφφ

φφ

22

1212

− 

−−

kq,,h=,g

,,h=,g

qq

qq

  

From relations 

k,q,v'=',v= +q+q+q+q  φ φ 2121  

and due to formulas (62) and (63), we have 

( )  ( )  

( )  ( )  . whereφφ

φφ

222

1212

kq,,h=,g

,,h=,g

+qq

+qq

 

−

 

Let us denote 

                          
( )  .r,g=q j

i

ji,
  (64) 

Theorem 5. The following relations are valid: 

                    
Z,i=q=q

,kj,=q

kiki

ji,ji,



− 

−  0

22δ

,21,2

 (65) 

                .12δ 2 Zi,+kj,=q ji,ji,  −  (66) 

Proof. Due to relations 

,kq,ω=r,ω=r qqqq 2 where 221212 − −−  

we obtain 
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( )  ( )  

.q 2

0 δ 2

12

12

12

Z',kq

,=r,g,=r,g q

q'

q'q,q

q'

− 

−

−

−

 (67) 

   

( )  ( )  

.q 2

δ 0 2

2

12

2

Z',kq

,=r,g,=r,g q'q,q

q'

q

q'

− 

−
 (68) 

For ,kq 2−  we have ,=r,=r qqqq 2223212 ω ω −−−  

and then 

                   

( )  

( )  

Z,',+kq

,=r,g=

=r,g

q,q'q

q'

q

q'



−−

−

−

−

q 2

 δ 132

12

12

12

 (69) 

                       

( )  

( )  

Z,',+kq

=,g=

=r,g

q

q'

q

q'

 

−

−

−

q 2

0ω 22

12

2

12

 (70) 

                        

( )  

( )  

Z,',+kq

=,g=

=r,g

q

q'

q

q'



−

−

q 2

0ω 32

2

12

2

 (71) 

                  

( )  

( )  

.q 2

 δω 122

2

2

2

Z',+kq

,=,g=

=r,g

q,q'q

q'

q

q'

 

−−
 (72) 

Formulas (67) – (72) can be written briefly in the 

form of relations if we use  notation (64), 

Z.i,kj,=q ji,ji, −  42 whereδ  (73) 

Z.i,+kj,=q ji,ji,  − 42 whereδ 1  (74) 

Now we find qi,j, where 

.+k,k,k=jZ,i 32...2232 −−  

1. In the case that j=2k-3 we have 

( )  ( )  ,=r,g=r,g k

p

k

p 0 0, 32

2

32

12

−−

−
 (75) 

where  

( ) ( )( )

( ) ( )( ).2

1111

kpkp

+k+pk+p

 − 

 −
 (76) 

Now  consider the case p=k-1, i.e. we have to find the 

values:  

( )
  

( )
  .r,g,r,g kkkk 32223232 −−−−

 

When calculating them, it will be necessary to use 

formulas (57), when q=k-1. Thus, taking into account 

the equalities ,f'=' kkφ ,f= kkφ  we have 

              

( )  

( )
( )

,=
f,f',f,f'

f,',f,f'
=

=r,g=q

kkkk

kkkk

k

k

kk

1
det

φdet

11

11

32

32

33,22

−−

−−

−

−

−−

 (77) 

              

( )  

( )
( )

,=
f,f',f,f'

f,,f,f'
=

=r,g=q

kkkk

kkkk

k

k

kk

0
det

φdet

11

11

32

22

32,22

−−

−−

−

−

−−

 (78) 

2. For j=2k-2 we have 

          

( )  ( )  

( ) ( )( ).2 where

0 0, 22

2

22

12

kpkp

,=r,g=r,g k

p

k

p

 − 

−−

−

 (79) 

In the case that p=k-1 we find 

( )
  

( )
  .r,g,r,g kkkk 22222232 −−−−

 

Putting in formula  (59) q=k-1, we have 

             

( )  

( )
( )

,=
f,f',f,f'

',f',f,f'
=

=r,g=q

kkkk

kkkk

k

k

kk

0
det

φdet

11

11

22

32

23,22

−−

−−

−

−

−−

 (80) 

              

( )  

( )
( )

1.
det

φdet

11

11

22

22

22,22

=
f,f',f,f'

,f',f,f'
=

=r,g=q

kkkk

kkkk

k

k

kk

−−

−−

−

−

−−

 (81) 

3. Now let j=2k-1. In this case we find 

( )  ( )  ,=r,g=r,g k

p

k

p 0 0, 12

2

12

12

−−

−
 (82) 

where   ( ) ( )( ).11 +kpkp  −   
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Let p=k; we calculate  

( )  ( )  . 12

2

12

12

−−

−

k

k

k

k r,g,r,g  

Putting in formula  (58) q=k and taking into account 

relations 

                     ,f'=',f= +k+k+k+k 2121 φ φ  (83) 

we get 

            

( )  

( )
( )

,=
f,f',f,f'

f,f',f,'
=

=r,g=q

+k+k+k+k

+k+k+k+k

k

k

kk

0
det

φdet

2211

2211

12

12

11,22 −

−

−−

 (84) 

               

( )  

( )
( )

0.
det

φdet

2211

2211

12

2

1,22

=
f,f',f,f'

f,f',f,
=

=r,g=q

+k+k+k+k

+k+k+k+k

k

k

kk −−

 (85) 

4. Let j=2k. We have 

( )  ( )  ,=r,g=r,g k

p

k

p 0 0, 2

2

2

12 −
 (86) 

where   ( ) ( )( ).11 +kpkp  −   

It remains to consider the case p = k and calculate 

( )  ( )  . 2

2

2

12

k

k

k

k r,g,r,g −
 

Putting in formula (60) q=k and taking into account 

relations (83), we get: 

              

( )  

( )
( )

,=
f,f',f,f'

f,f',',f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

k

k

kk

0
det

φdet

2211

2211

2

12

1,22

−

−

 (87) 

              

( )  

( )
( )

0.
det

φdet

2211

2211

2

2

,22

=
f,f',f,f'

f,f',,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

k

k

kk

 (88) 

5. Considering the case j=2k+1 similar to the 

previous we find 

( )  ( )  ,=r,g=r,g +k

p

+k

p 0 0, 12

2

12

12 −
 (89) 

where   ( ) ( )( ).21 +kpkp  −   

Let p=k. Substituting q=k into formula (57) and using 

(83), we find 

              

( )  

( )
( )

,=
f,f',f,f'

f,',f,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

k

+kk

1
det

φdet

2211

2111

12

12

11,22

−

−

 (90) 

              

( )  

( )
( )

;=
f,f',f,f'

f,,f,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

k

+kk

0
det

φdet

2211

2111

12

2

1,22

 (91) 

Substituting q=k into formula (58), we have 

                 

( )  

( )
( )

,=
f,f',f,f'

f,f',f,'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

0
det

φdet

3322

3322

12

12

12,22

 (92) 

                 

( )  

( )
( )

,=
f,f',f,f'

f,f',f,
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

0
det

φdet

3322

3322

12

22

12,22

 (93) 

because 

                        .f'=',f= +k+k+k+k 3232 φ φ  (94) 

6. In the case that j=2k+2 we find 

             

( )  ( )  

( ) ( )( ).21 where

0 0, 12

2

12

12

+kpkp

,=r,g=r,g +k

p

+k

p

 − 

−

 (95) 

When p=k from equalities (59) with q=k+1 we have 

                

( )  

( )
( )

,=
f,f',f,f'

,f',f,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

k

+kk

1
det

φdet

2211

1211

22

12

21,22

−

−

 (96) 

                

( )  

( )
( )

,=
f,f',f,f'

,f',f,f
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

k

+kk

0
det

φdet

2211

1211

22

2

2,22

 (97) 

Here equalities (83) were used. 

Now we put p=k+1. We find from relation (60), the 

following relation is considered for q=k+1, 
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( )  

( )
( )

,=
f,f',f,f'

f,f',',f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

0
det

φdet

3322

3322

12

12

21,22

 (98) 

                

( )  

( )
( )

0.
det

φdet

3322

3322

22

22

22,22

=
f,f',f,f'

f,f',,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

 (99) 

7. Now, considering the case j=2k+3, we get 

             

( )  ( )  

( ) ( )( ).3 where

0 0, 32

2

32

12

+kpkp

,=r,g=r,g +k

p

+k

p

  

−

 (100) 

Substituting q=k+2 into formula (57) when p=k+1, 

we have 

                

( )  

( )
( )

1.
det

φdet

3322

3222

32

12

31,22

=
f,f',f,f'

f,',f,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

 (101) 

                

( )  

( )
( )

0.
det

φdet

3322

3222

32

22

32,22

=
f,f',f,f'

f,,f,f'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

 (102) 

We turn to the case p = k + 2. From relation (58), 

considered for q = k + 2, in a similar way, due to the 

equalities 

,f'=',f= +k+k+k+k 4343 φ φ  

we find 

           

( )  

( )
( )

,=
f,f',f,f'

f,f',f,'
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

0
det

φdet

4433

4433

32

32

33,22

 (103) 

            

( )  

( )
( )

0.
det

φdet

4433

4433

32

42

34,22

=
f,f',f,f'

f,f',f,
=

=r,g=q

+k+k+k+k

+k+k+k+k

+k

+k

+k+k

 (104) 

Equations (73)–(82), (84)–(93), (95)–(104) 

established earlier prove the validity of relations 

(65)–(66). 

This concludes the proof. 

6 Conclusion 

In this paper, we describe the process of removing a 

group of nodes upon approximation by Hermite 

splines of the first height. In addition, the process of 

adding nodes is described here. The proposed results 

allow us to actively perform simultaneous 

approximation of the stream of values for the 

function and its derivative. For this aim we offer  

(generally speaking, nonpolynomial) splines of the 

Hermite type. The proposed formulas are quite 

simple. They lead us to sustainable calculations. 

They are exact on the components of the generating 

function. Established calibration relations allow us to 

obtain the embedded the Hermite spline spaces 

constructed on the embedded grids. Such relations 

lead to a number of spline-wavelet decompositions of 

the mentioned embedded spaces. 
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